We are searching data for your request:
Upon completion, a link will appear to access the found materials.
Da jeg læste om den heliocentriske model, kom der et spørgsmål: Hvordan var Nicolaus Copernicus i stand til at finde ud af, at solen er i centrum af solsystemet, og at alle planeter kredser omkring det, selvom teleskopet ikke var opfundet endnu? I løbet af hans tid var den geocentriske model standard.
Copernicus fandt ikke ud af, at solen var i midten af solsystemet. Han foreslog blot en heliocentrisk model forenklet beregningen af planetbaner. Epicykler (cirkler inden for cirkler) var stadig nødvendige i den kopernikanske model, for eksempel for Mars kredsløb, men der var færre af dem end i den Ptolemaiske model.
Den kopernikanske model fik et løft, da Kepler, da han opdagede, at planetariske baner var elliptisk, fjernede behovet for epicykler fuldstændigt og øgede Copernicus 'fordel i forhold til Ptolemæus.
Det første bevis for, at den kopernikanske model var en ægte repræsentation af den virkelige virkelighed kom med observationen af stjerneparallax i 1806. Indtil da blev det kun foretrukket, fordi det var en enklere beskrivelse - en meget enklere efter Kepler.
Dybest set, fordi det var en mere elegant løsning at beskrive planetenes bevægelse. Dette kunne let ses uden teleskoper. Den store forskel var, at det havde brug for meget mindre såkaldte epicykler (han havde stadig brug for dem, da alle hans baner var cirkulære ikke elliptiske):
Et af de skarpe matematiske problemer med denne model var, at planeterne lejlighedsvis rejste bagud over himlen over flere nætter med observation. Astronomer kaldte denne retrograd bevægelse. For at redegøre for det indarbejdede den nuværende model, baseret på den græske astronom og matematiker Ptolemaios opfattelse, et antal cirkler inden for cirkler - epicykler - inde i en planetens sti. Nogle planeter krævede så mange som syv cirkler, hvilket skabte en besværlig model, som mange følte var for kompliceret til at være naturligt forekommet.
-Space.com
Derudover var ideen ikke helt ny. Aristarchus foreslog ideen om en bevægelig jord i 250 f.Kr. og Copernicus var sandsynligvis bekendt med det. (Kilde)
Som bemærket i @ SpaceBreads svar, 'opdagede' Copernicus ikke heliocentricitet (der var ingen observationer, der understøtter hans teori), og han opfandt den heller ikke (det blev gjort to tusind år tidligere). Hans model var heller ikke bedre - fordi han insisterede på cirkulære baner, blev det modsagt af observationer og en dårligere pasform end Ptolemaios model.
Hvad han gjorde var at popularisere den heliocentriske model og hævde, at dens enkelhed gjorde det at foretrække, selvom det klart var forkert.
Det virkelige gennembrud var Keplers, der viste, at en heliocentrisk model med elliptiske baner gav en fremragende pasform til observationer. Og så viste Newton hvorfor Keplers model fungerede.
Hovedpointen, understreget af Copernicus selv, er, at hans teori beskrev sol system. Med andre ord var teorien i stand til at forudsige afstanden for alle planeter fra Solen og mellem hinanden (inklusive Jorden). I et geocentrisk system kan du udvide eller krympe kredsløb for en given planet uden at påvirke andre. Dette er umuligt i Copernicus-systemet - det væsentlige skabte han 3D-model af solsystemet.
Nicolas Copernicus opdagelse - Astronomi
Tjek vores sjove fakta for børn, der indeholder interessante triviaer, citater og information relateret til en række berømte forskere.
Nicolaus Copernicus Fakta
Nicolaus Copernicus var en astronom, der ændrede hvordan vi betragtede placeringen af solen, jorden og andre himmellegemer i rummet. Han begrundede, at det var solen midt i det kendte univers og ikke Jorden, en idé der var stærkt modsat på det tidspunkt. Læs videre for interessante fakta, citater og information om videnskabsmanden Nicolaus Copernicus.
Copernicus blev født den 19. februar 1473 og døde den 24. maj 1543.
Han blev født i Thorn, Royal Preussen, en del af Kongeriget Polen på det tidspunkt.
Den astronomiske model, som Copernicus udviklede, blev kaldt heliocentrisme (helios betyder sol). Den har solen ubevægelig i midten af universet, mens jorden og andre planeter roterer rundt om den i cirkulære stier.
En meget tidligere geocentrisk model (geo betyder Jorden) skabt af Ptolemaios fremhævede Jorden i centrum af universet. Denne model blev brugt af astronomer og andre forskere i århundreder, før Copernicus udviklede sin heliocentriske model.
Mange mener, at den teori og ideer, som Copernicus fremsatte, startede moderne astronomi og var begyndelsen på en videnskabelig revolution.
Copernicus 'arbejde & lsquoOn the Revolutions of Celestial Spheres & rsquo blev offentliggjort kort før han døde i 1543.
Copernicus 'færdigheder var ikke begrænset til kun astronomi. Copernicus var blandt andet også læge, lærd, økonom, oversætter, matematiker, kunstner og diplomat.
Det kemiske element Copernicum er opkaldt efter Copernicus. Det har symbolet Cn og atomnummer 112.
Berømte citater fra Nicolas Copernicus inkluderer: & ldquo Endelig skal vi placere solen selv i centrum af universet. & Rdquo
& ldquo For når et skib svæver roligt sammen, ser søfolkene dets bevægelse spejlet i alt udenfor, mens de på den anden side antager, at de er stille sammen med alt om bord. På samme måde kan jordens bevægelse utvivlsomt give det indtryk, at hele universet roterer. & Rdquo
Den heliocentriske model, der viser
cirkulære stier til planeter omkring solen.
1. Han kom fra en familie af købmænd og præster.
Nogle historikere mener, at Copernicus navn stammer fra Koperniki, en landsby i Polen opkaldt efter håndværkere, der udvindede og solgte kobber. Astronomens far, også kaldet Nicolaus Copernicus, var en succesrig kobberhandler i Krakow. Hans mor, Barbara Watzenrode, kom fra en stærk familie af købmænd, og hendes bror, Lucas Watzenrode den yngre, var en indflydelsesrig biskop. To af Copernicus 'tre ældre søskende sluttede sig til den katolske kirke, en som kanon og en som nonne.
Nicolaus Copernicus Bidrag til astronomi
Ligesom de andre matematikere som Galileo bidrog Nicolaus Copernicus også meget til udviklingen af den moderne astronomi. Nicolas Copernicus bidrag til astronomi var enorme. Hans bidrag kom med stor indflydelse på den astronomiske historie. Han ændrede sin filosofi astronomisk og religiøst. Det var fordi den romersk-katolske lære afhænger af troen på, at universet er jordcentreret. Det var også i modstrid med teorien, som en græsk astronom Ptolemaios argumenterede for.
Teorien afslørede, at planeten Jorden var en ubevægelig kugle, som kan findes i den midterste del af universet og de andre planeter, og solen roterede omkring den nævnte planet. Denne teori blev etableret i 150 e.Kr. & # 038, og den blev brugt i vid udstrækning siden dengang, hvilket gjorde hypotesen om Copernicus til en ekstrem stor indflydelse. Selvom teorien om Nicolaus Copernicus gik op i modsætning til disse forhindringer, havde mange stadig problemer med denne tro. Det er fordi hvis planeten Jorden drejer og kredser om, vil de fleste mennesker troede, at hvis nogen hoppede ud, så vil man blive efterladt netop det sted. Derfor vil personen rejse, hvilket de naturligvis vidste ikke skete. Copernicus 'tro var trods alt korrekt.
Han troede, at hans teori i den tid, hvor astronomi på jorden var i et dilemma. Almanakken var ude af trin, og månens bane opnåede den tilsyneladende størrelse af månen, der ændrede sig, når den ikke gjorde det. Hypotesen om Ptolemæus om det jordcentrerede rum var ikke på plads. Det er grunden til, at Copernicus forsøgte at bevise, hvordan universet faktisk kredsede.
Fra starten begyndte Copernicus at flytte solen. Da Copernicus centrerede solen, begyndte han at inkludere planeterne, og han erklærede, at planeten Jorden var den tredje længste planet fra solen. Der var kun få planeter identificeret, og de var Venus, Kviksølv, Jorden, Jupiter, Saturn og Mars. Han forsker i hele sit erhverv som matematiker hjalp ham med at bestemme afstanden mellem planeterne og solen. Copernicus sagde, at planeterne roterede rundt om solen, og månen ignorerede solens bane, og den kredsede omkring planeten Jorden.
Denne teori svarede sandheden om, at størrelsen på planeterne varierer hele året rundt, og at banerne på alle planeter nu var uregelmæssige og vil blive forklaret. Han skrev sin egen hypotese i en bog ved navn De Revolutionibus Orbium Coelestium eller On the Revolutiones of the Heavenly Spheres. Han skrev netop denne bog i 1530. På den anden side blev den først offentliggjort, efter at han døde i 1543.
Det menes, at hans bog ikke blev frigivet med det samme & # 038, den blev kun udgivet, efter at han døde, fordi han var bange for, at han blev anerkendt som kætter af det katolske folk. Hovedårsagen til hans frygt var, at enhver, der står i kontrast til den katolske lære, vil blive holdt væk, tortureret eller anden straf vil blive henrettet mod denne person. Denne slags situation skete med Galileo, den berømte matematiker, der troede på og beviste teorien om Nicolaus Copernicus.
Indhold
Nicolaus Copernicus blev født den 19. februar 1473 i byen Toruń (Thorn), i provinsen Royal Preussen, i kronen af kongeriget Polen. [9] [10]
Hans far var købmand fra Kraków, og hans mor var datter af en velhavende Toruń-købmand. [11] Nicolaus var den yngste af fire børn. Hans bror Andreas (Andrew) blev en augustinsk kanon i Frombork (Frauenburg). [11] Hans søster Barbara, opkaldt efter sin mor, blev benediktinske nonne, og i sine sidste år var hun kloster i Chełmno (Kulm), hun døde efter 1517. [11] Hans søster Katharina blev gift med forretningsmanden og Toruń byråd Barthel Gertner og efterlod fem børn, som Copernicus passede til slutningen af sit liv. [11] Copernicus giftede sig aldrig og vides ikke at have haft børn, men fra mindst 1531 indtil 1539 blev hans forhold til Anna Schilling, en husholderske, betragtet som skandaløst af to biskopper i Warmia, der i årenes løb opfordrede ham til at afbryde forholdet til sin "elskerinde". [12]
Fars familie
Copernicus 'fars familie kan spores til en landsby i Schlesien mellem Nysa (Neiße) og Prudnik (Neustadt). Landsbyens navn er forskelligt stavet Kopernik, [g] Copernik, Copernic, Kopernic, Coprirnik og i dag Koperniki. [14] I det 14. århundrede begyndte familiemedlemmer at flytte til forskellige andre schlesiske byer, til den polske hovedstad Kraków (1367) og til Toruń (1400). [14] Faderen, Mikołaj den ældre, sandsynligvis søn af Jan, kom fra Kraków-linjen. [14]
Nicolaus blev opkaldt efter sin far, der for første gang vises i optegnelser som en velhavende købmand, der handlede med kobber og solgte det mest i Danzig (Gdańsk). [15] [16] Han flyttede fra Kraków til Toruń omkring 1458. [17] Toruń, beliggende ved Vistula-floden, var på det tidspunkt involveret i den trettenårige krig, hvor Kongeriget Polen og det preussiske forbund, en alliancen af preussiske byer, herredømme og præster, kæmpede den tyske ordre over kontrollen over regionen. I denne krig valgte hansestæder som Danzig og Toruń, Nicolaus Copernicus hjemby, at støtte den polske konge, Casimir IV Jagiellon, som lovede at respektere byernes traditionelle store uafhængighed, som den tyske ordre havde udfordret. Nicolaus 'far var aktivt engageret i datidens politik og støttede Polen og byerne mod den tyske orden. [18] I 1454 formidlede han forhandlinger mellem Polens kardinal Zbigniew Oleśnicki og de preussiske byer om tilbagebetaling af krigslån. [14] I den anden tornefred (1466) opgav den tyske orden formelt alle krav til sin vestlige provins, der som Kongeligt Preussen forblev en region i Kongeriget Polens krone indtil den første (1772) og den anden (1793) ) Skillevægge i Polen.
Copernicus far giftede sig med Barbara Watzenrode, astronomens mor, mellem 1461 og 1464. [14] Han døde omkring 1483. [11]
Moderens familie
Nicolaus 'mor, Barbara Watzenrode, var datter af en velhavende Toruń-patricier og byråd, Lucas Watzenrode den ældre (død 1462) og Katarzyna (enke efter Jan Peckau), der i andre kilder blev nævnt som Katarzyna Rüdiger gente Modlibóg (død 1476). [11] Modlibógs var en fremtrædende polsk familie, der havde været kendt i Polens historie siden 1271. [19] Watzenrode-familien var ligesom familien Kopernik kommet fra Schlesien fra nær nearwidnica (Schweidnitz), og efter 1360 havde de bosat sig i At løbe. De blev hurtigt en af de rigeste og mest indflydelsesrige patricierfamilier. [11] Gennem Watzenrodes 'omfattende familieforhold ved ægteskab var Copernicus relateret til velhavende familier Toruń (Thorn), Gdańsk (Danzig) og Elbląg (Elbing) og til fremtrædende polske adelsfamilier i Preussen: Czapskis, Działyńskis, Konopackis og Kościeleckis. [11] Lucas og Katherine fik tre børn: Lucas Watzenrode den Yngre (1447–1512), der skulle blive biskop i Warmia og Copernicus 'skytshelgen Barbara, astronomens mor (død efter 1495) og Christina (død inden 1502), som i 1459 giftede sig med Toruń-købmanden og borgmesteren, Tiedeman von Allen. [11]
Lucas Watzenrode den Ældre, en velhavende købmand og i 1439–62 præsident for den juridiske bænk, var en bestemt modstander af de tyske riddere. [11] I 1453 var han delegeret fra Toruń på Grudziądz (Graudenz) konferencen, der planlagde oprøret mod dem. [11] Under den påfølgende tretten års krig (1454–66) støttede han aktivt de preussiske byers krigsindsats med betydelige monetære subsidier (kun en del af hvilken han senere krævede igen) med politisk aktivitet i Toruń og Danzig, og ved personligt at kæmpe i kampe ved Łasin (Lessen) og Malbork (Marienburg). [11] Han døde i 1462. [11]
Lucas Watzenrode den Yngre, astronomens onkel og protektor fra sin mor, blev uddannet ved universitetet i Kraków (nu Jagiellonian University) og ved universiteterne i Köln og Bologna. Han var en bitter modstander af den tyske orden, [h] og dens stormester omtalte ham engang som "djævelen inkarneret". [i] I 1489 blev Watzenrode valgt til biskop i Warmia (Ermeland, Ermland) mod præference fra kong Casimir IV, som havde håbet at installere sin egen søn i dette sæde. [22] Som et resultat skændtes Watzenrode med kongen indtil Casimir IVs død tre år senere. [23] Watzenrode var derefter i stand til at danne tætte forbindelser med tre på hinanden følgende polske monarker: John I Albert, Alexander Jagiellon og Sigismund I the Old. Han var en ven og vigtig rådgiver for hver hersker, og hans indflydelse styrkede stærkt båndene mellem Warmia og det egentlige Polen. [24] Watzenrode blev betragtet som den mest magtfulde mand i Warmia, og hans rigdom, forbindelser og indflydelse tillod ham at sikre Copernicus 'uddannelse og karriere som kanon i Frombork Cathedral. [22] [j]
Sprog
Copernicus antages at have talt latin, tysk og polsk med lige så flydende, han talte også græsk og italiensk og havde noget kendskab til hebraisk. [k] [l] [m] [n] Langt størstedelen af Copernicus 'eksisterende skrifter er på latin, det sprog i den europæiske akademiske verden i hans levetid.
Argumenter for at tysk er Copernicus's modersmål er, at han blev født i en overvejende tysktalende bypatricierklasse, der brugte tysk ved siden af latin, som sprog for handel og handel i skriftlige dokumenter, [34] og at mens han studerede kanonisk ret på Universitetet i Bologna i 1496 underskrev han det tyske natio (Natio Germanorum) - en studenterorganisation, der ifølge sine vedtægter fra 1497 var åben for studerende fra alle kongeriger og stater, hvis modersmål var tysk. [35] Ifølge den franske filosof Alexandre Koyré er Copernicus 'registrering hos Natio Germanorum betyder ikke i sig selv, at Copernicus betragtede sig selv tysk, da studerende fra Preussen og Schlesien rutinemæssigt var så kategoriseret, hvilket havde visse privilegier, der gjorde det til et naturligt valg for tysktalende studerende, uanset deres etnicitet eller selvidentifikation. [35] [o] [p] [38]
Efternavnet Kopernik, Copernik, Koppernigk, i forskellige stavemåder, er optaget i Kraków fra ca. 1350, tilsyneladende givet til folk fra landsbyen Koperniki (før 1845 gengivet Kopernik, Copernik, Copirnikog Koppirnik) i hertugdømmet Nysa, 10 km syd for Nysa, og nu 10 km nord for den polsk-tjekkiske grænse. Nicolaus Copernicus 'oldefar registreres som at have modtaget statsborgerskab i Kraków i 1386. Toponymet Kopernik (moderne Koperniki) er forskelligt bundet til det polske ord for "dild" (koper) og det tyske ord for "kobber" (Kupfer). [q] Suffikset -nik (eller flertal, -niki) betegner et slavisk og polsk agent substantiv.
Som det var almindeligt i perioden varierer stavemåden for både toponymet og efternavnet meget. Copernicus "var ret ligeglad med ortografi". [39] I løbet af sin barndom omkring 1480 blev navnet på hans far (og dermed den fremtidige astronom) registreret i Thorn som Niclas Koppernigk. [40] I Kraków underskrev han sig på latin, Nicolaus Nicolai de Torunia (Nicolaus, søn af Nicolaus, af Toruń). [r] I Bologna, i 1496, registrerede han sig i Matricula Nobilissimi Germanorum Collegii, resp. Annales Clarissimae Nacionis Germanorum, af Natio Germanica Bononiae, som Dominus Nicolaus Kopperlingk de Thorn - IX grosseti. [42] [43] Ved Padua underskrev han sig selv "Nicolaus Copernik", senere "Coppernicus". [39] Astronomen latinerede således sit navn til Coppernicus, generelt med to "p" (i 23 af 31 undersøgte dokumenter), [44] men senere i livet brugte han et enkelt "p". På titelsiden af De revolutionibus, Rheticus offentliggjorde navnet (i genitiv eller besiddende sag) som "Nicolai Copernici". [s]
Uddannelse
I Polen
Efter sin fars død tog den unge Nicolaus 'morbror, Lucas Watzenrode den Yngre (1447-1512), drengen under sin fløj og sørgede for hans uddannelse og karriere. [11] Watzenrode opretholdt kontakter med førende intellektuelle personer i Polen og var en ven af den indflydelsesrige italienskfødte humanist og Krakow-hovmester Filippo Buonaccorsi. [45] Der er ingen overlevende primære dokumenter om de første år af Copernicus barndom og uddannelse. [11] Copernicus-biografer antager, at Watzenrode først sendte den unge Copernicus til St. John's School i Toruń, hvor han selv havde været mester. [11] Senere, ifølge Armitage, gik drengen på katedralskolen i Włocławek, op ad Vistula-floden fra Toruń, som forberedte eleverne til indrejse til universitetet i Kraków, Watzenrodes alma mater i Polens hovedstad. [46]
I vintersemestret 1491–92 studerede Copernicus, som "Nicolaus Nicolai de Thuronia", sammen med sin bror Andrew ved universitetet i Kraków (nu Jagiellonian University). [11] Copernicus begyndte sine studier på Institut for Kunst (fra efteråret 1491, formodentlig indtil sommeren eller efteråret 1495) i Krakóws astronomisk-matematiske skole og fik grundlaget for hans efterfølgende matematiske præstationer. [11] Ifølge en senere, men troværdig tradition (Jan Brożek), var Copernicus elev af Albert Brudzewski, som på det tidspunkt (fra 1491) var professor i aristotelisk filosofi, men underviste astronomi privat uden for universitetet. Copernicus blev fortrolig med Brudzewskis udbredte læsning. kommentar til Georg von Peuerbachs Theoricæ novæ planetarum og næsten helt sikkert deltog i foredragene af Bernard af Biskupie og Wojciech Krypa fra Szamotuły og sandsynligvis andre astronomiske foredrag af Jan af Głogów, Michał fra Wrocław (Breslau), Wojciech fra Pniewy og Marcin Bylica fra Olkusz. [47]
Copernicus 'Kraków-studier gav ham en grundig forankring i den matematiske astronomi, der blev undervist på universitetet (aritmetik, geometri, geometrisk optik, kosmografi, teoretisk og beregningsmæssig astronomi) og et godt kendskab til Aristoteles' filosofiske og naturvidenskabelige skrifter (De coelo, Metafysik) og Averroes (som i fremtiden vil spille en vigtig rolle i udformningen af Copernicus 'teori), stimulere hans interesse i at lære og gøre ham fortrolig med den humanistiske kultur. [22] Copernicus udvidede den viden, han tog fra universitetets forelæsningssale med uafhængig læsning af bøger, som han erhvervede i sine Kraków-år (Euclid, Haly Abenragel, Alfonsine tabeller, Johannes Regiomontanus ' Tabulae directionum) til denne periode dateres sandsynligvis også hans tidligste videnskabelige noter, nu bevaret delvist ved Uppsala Universitet. [22] I Kraków begyndte Copernicus at samle et stort bibliotek om astronomi, det blev senere transporteret som krigsbytte af svenskerne under vandfloden i 1650'erne og er nu på Uppsala universitetsbibliotek. [48]
Copernicus 'fire år i Kraków spillede en vigtig rolle i udviklingen af hans kritiske evner og indledte sin analyse af logiske modsætninger i de to "officielle" astronomisystemer - Aristoteles teori om homocentriske sfærer og Ptolemaios mekanisme for excentriske og epicykler - den overvældende og kassering deraf ville være det første skridt mod skabelsen af Copernicus 'egen doktrin om universets struktur. [22]
Uden at tage en grad, sandsynligvis i efteråret 1495, forlod Copernicus Kraków for retten til sin onkel Watzenrode, som i 1489 var blevet hævet til prinsbiskop af Warmia og snart (inden november 1495) forsøgte at placere sin nevø i Warmia kanonik fraflyttet ved døden den 26. august 1495 af sin tidligere lejer, Jan Czanow. Af uklare grunde - sandsynligvis på grund af modstand fra en del af kapitlet, der appellerede til Rom - blev Copernicus 'installation forsinket, hvilket bøjede Watzenrode til at sende begge sine nevøer til at studere kanonelov i Italien, tilsyneladende med henblik på at fremme deres kirkelige karriere og derved styrkede også sin egen indflydelse i Warmia-kapitlet. [22]
Den 20. oktober 1497 lykkedes Copernicus formelt til Warmia-kanoniet, der var blevet tildelt ham to år tidligere. Til dette tilføjede han ved et dokument dateret 10. januar 1503 i Padua en sinecure ved Collegiate Church of the Holy Cross og St. Bartholomew i Wrocław (på det tidspunkt i Kongeriget Bohemia). På trods af at han blev tildelt en pavelig fornærmelse den 29. november 1508 for at modtage yderligere fordele, opnåede Copernicus ikke kun gennem sin kirkelige karriere ikke yderligere forudbøjninger og højere stationer (kapaciteter), men i 1538 opgav han Wrocław sinecure. Det er uklart, om han nogensinde blev ordineret til præst. [49] Edward Rosen hævder, at han ikke var det. [50] [51] Copernicus tog mindre ordrer, som var tilstrækkelige til at antage et kapitelkanonik. [22] Den katolske encyklopædi foreslår, at hans ordination var sandsynlig, da han i 1537 var en af fire kandidater til biskopssædet Warmia, en stilling, der krævede ordination. [52]
I Italien
I mellemtiden forlod Warmia i midten af 1496 - muligvis med følge af kapitelets kansler, Jerzy Pranghe, som skulle til Italien - om efteråret, muligvis i oktober, ankom Copernicus til Bologna og et par måneder senere (efter 6. januar 1497) underskrev sig selv i registret over Bologna University of Jurists 'tyske nation', som omfattede unge polakker fra Schlesien, Preussen og Pommern samt studerende af andre nationaliteter. [22]
Under sit treårige ophold i Bologna, der fandt sted mellem efteråret 1496 og foråret 1501, ser Copernicus ud til at have viet sig mindre ivrig efter at studere kanonret (han fik først sin doktorgrad i kanonret efter syv år efter en anden tilbagevenden til Italien i 1503) end at studere humaniora - sandsynligvis deltage i foredrag af Filippo Beroaldo, Antonio Urceo, kaldet Codro, Giovanni Garzoni og Alessandro Achillini - og at studere astronomi. Han mødte den berømte astronom Domenico Maria Novara da Ferrara og blev hans discipel og assistent. [22] Copernicus var ved at udvikle nye ideer inspireret af at læse "Almagest-indbegrebet" (Indbegrebet i Almagestum Ptolemei) af George von Peuerbach og Johannes Regiomontanus (Venedig, 1496). Han verificerede sine observationer om visse særegenheder i Ptolemaios teori om månens bevægelse ved at lede den 9. marts 1497 i Bologna en mindeværdig observation af okkultationen af Aldebaran, den lyseste stjerne i Taurus-konstellationen, ved månen. Den humanistiske Copernicus søgte bekræftelse på sin voksende tvivl gennem tæt læsning af græske og latinske forfattere (Pythagoras, Aristarchos fra Samos, Cleomedes, Cicero, Plinius den ældre, Plutarch, Philolaus, Heraclides, Ecphantos, Platon), samlet mens han var i Padua, fragmentarisk historisk information om gamle astronomiske, kosmologiske og kalendersystemer. [53]
Copernicus tilbragte jubelåret 1500 i Rom, hvor han ankom sammen med sin bror Andrew det forår, uden tvivl for at udføre en læreplads ved den pavelige Curia. Også her fortsatte han imidlertid sit astronomiske arbejde, der blev påbegyndt i Bologna, og observerede for eksempel en måneformørkelse om natten den 5. til 6. november 1500. Ifølge en senere beretning af Rheticus var Copernicus også - sandsynligvis privat, snarere end kl. den romerske Sapienza-som en "Professor Mathematum"(professor i astronomi) leveret," til mange. studerende og. førende videnskabsmestre ", offentlige forelæsninger viet sandsynligvis til en kritik af de moderne matematiske astronomis løsninger. [54]
På sin returrejse stoppede han uden tvivl kort i Bologna, i midten af 1501 ankom Copernicus tilbage til Warmia. Efter den 28. juli modtaget fra kapitlet en to-årig forlængelse af orlov for at studere medicin (da "han i fremtiden kan være en nyttig medicinsk rådgiver for vores pastor overlegen [biskop Lucas Watzenrode] og herrene i kapitlet"), i sensommeren eller om efteråret vendte han tilbage til Italien, sandsynligvis ledsaget af sin bror Andrew [v] og af Canon Bernhard Sculteti. Denne gang studerede han ved universitetet i Padua, berømt som sæde for medicinsk læring, og - bortset fra et kort besøg i Ferrara i maj – juni 1503 for at bestå eksamen for og modtage sin doktorgrad i kanonret - forblev han på Padua fra efterår 1501 til sommer 1503. [54]
Copernicus studerede medicin sandsynligvis under ledelse af de ledende Padua-professorer - Bartolomeo da Montagnana, Girolamo Fracastoro, Gabriele Zerbi, Alessandro Benedetti - og læste medicinske afhandlinger, som han erhvervede på dette tidspunkt af Valescus de Taranta, Jan Mesue, Hugo Senensis, Jan Ketham, Arnold de Villa Nova og Michele Savonarola, som ville danne fosteret i hans senere medicinske bibliotek. [54]
Et af emnerne, som Copernicus skal have studeret, var astrologi, da det blev betragtet som en vigtig del af en medicinsk uddannelse. [56] I modsætning til de fleste andre fremtrædende renæssance-astronomer ser det imidlertid ud til, at han aldrig har praktiseret eller udtrykt interesse for astrologi. [57]
Som i Bologna begrænsede Copernicus sig ikke til sine officielle studier. Det var sandsynligvis Padua-årene, der så begyndelsen på hans hellenistiske interesser. Han gjorde sig fortrolig med græsk sprog og kultur ved hjælp af Theodorus Gazas grammatik (1495) og Johannes Baptista Chrestonius 'ordbog (1499) og udvidede sine studier af antikken, begyndt i Bologna, til skrifterne fra Bessarion, Lorenzo Valla og andre. Der synes også at være beviser for, at det var under hans ophold i Padua, at ideen til sidst udkrystalliserede, at basere et nyt verdenssystem på Jordens bevægelse. [54] Da tiden for Copernicus vendte hjem, rejste han i foråret 1503 til Ferrara, hvor han den 31. maj 1503, efter at have bestået de obligatoriske eksamener, blev tildelt graden doktor i Canon Law (Nicolaus Copernich de Prusia, Jure Canonico. et doctoratus [58]). Det var uden tvivl kort tid efter (senest i efteråret 1503), at han forlod Italien for godt for at vende tilbage til Warmia. [54]
Planetariske observationer
Copernicus foretog tre observationer af kviksølv med fejl på -3, -15 og -1 minuts bue. Han lavede en af Venus med en fejl på -24 minutter. Fire blev lavet af Mars med fejl på 2, 20, 77 og 137 minutter. Der blev foretaget fire observationer af Jupiter med fejl på 32, 51, -11 og 25 minutter. Han lavede fire af Saturn med fejl på 31, 20, 23 og -4 minutter. [59]
Andre observationer
Med Novara observerede Copernicus en okkultation af Aldebaran ved månen den 9/3/1497. Copernicus observerede også en sammenhæng mellem Saturn og månen den 4/3/1500. Han så en formørkelse af månen den 6/11/1500. [60] [61]
Efter at have afsluttet alle sine studier i Italien vendte den 30-årige Copernicus tilbage til Warmia, hvor han ville leve de resterende 40 år af sit liv bortset fra korte rejser til Kraków og til nærliggende preussiske byer: Toruń (Thorn), Gdańsk ( Danzig), Elbląg (Elbing), Grudziądz (Graudenz), Malbork (Marienburg), Königsberg (Królewiec). [54]
Prinsbiskoprådet i Warmia nød betydelig autonomi med sin egen diæt (parlament) og monetære enhed (det samme som i de andre dele af Det Kongelige Preussen) og statskassen. [62]
Copernicus var hans onkels sekretær og læge fra 1503 til 1510 (eller måske indtil sin onkels død den 29. marts 1512) og boede på biskopens slot ved Lidzbark (Heilsberg), hvor han begyndte at arbejde på sin heliocentriske teori. I sin officielle egenskab deltog han i næsten alle sin onkels politiske, kirkelige og administrativ-økonomiske pligter. Fra begyndelsen af 1504 fulgte Copernicus Watzenrode til sessioner med den kongelige preussiske diæt, der blev afholdt i Malbork og Elbląg, og, skriv Dobrzycki og Hajdukiewicz, "deltog. I alle de vigtigere begivenheder i det komplekse diplomatiske spil, som den ambitiøse politiker og statsmand spillede i forsvaret. af Preussen og Warmias særlige interesser, mellem fjendtlighed over for den [teutoniske] orden og loyalitet over for den polske krone. " [54]
I 1504–12 foretog Copernicus adskillige rejser som en del af sin onkels følge - i 1504 til Toruń og Gdańsk, til en samling i Det Kongelige Preussiske Råd i nærvær af Polens konge Alexander Jagiellon til sessioner med den preussiske diæt i Malbork (1506) , Elbląg (1507) og Sztum (Stuhm) (1512), og han kan have deltaget i en Poznań (Posen) session (1510) og kroningen af Polens kong Sigismund I den gamle i Kraków (1507). Watzenrodes rejseplan antyder, at Copernicus i foråret 1509 måske har deltaget i Kraków sejm. [54]
Det var sandsynligvis ved sidstnævnte lejlighed i Kraków, at Copernicus sendte til tryk på Jan Hallers presse sin oversættelse fra græsk til latin af en samling af den byzantinske historiker Theophylact Simocatta fra det 7. århundrede af 85 korte digte kaldet Epistles, eller bogstaver, der formodes at have passeret mellem forskellige tegn i en græsk historie. They are of three kinds—"moral," offering advice on how people should live "pastoral", giving little pictures of shepherd life and "amorous", comprising love poems. They are arranged to follow one another in a regular rotation of subjects. Copernicus had translated the Greek verses into Latin prose, and he now published his version as Theophilacti scolastici Simocati epistolae morales, rurales et amatoriae interpretatione latina, which he dedicated to his uncle in gratitude for all the benefits he had received from him. With this translation, Copernicus declared himself on the side of the humanists in the struggle over the question of whether Greek literature should be revived. [29] Copernicus's first poetic work was a Greek epigram, composed probably during a visit to Kraków, for Johannes Dantiscus' epithalamium for Barbara Zapolya's 1512 wedding to King Zygmunt I the Old. [63]
Some time before 1514, Copernicus wrote an initial outline of his heliocentric theory known only from later transcripts, by the title (perhaps given to it by a copyist), Nicolai Copernici de hypothesibus motuum coelestium a se constitutis commentariolus—commonly referred to as the Commentariolus. It was a succinct theoretical description of the world's heliocentric mechanism, without mathematical apparatus, and differed in some important details of geometric construction from De revolutionibus but it was already based on the same assumptions regarding Earth's triple motions. Det Commentariolus, which Copernicus consciously saw as merely a first sketch for his planned book, was not intended for printed distribution. He made only a very few manuscript copies available to his closest acquaintances, including, it seems, several Kraków astronomers with whom he collaborated in 1515–30 in observing eclipses. Tycho Brahe would include a fragment from the Commentariolus in his own treatise, Astronomiae instauratae progymnasmata, published in Prague in 1602, based on a manuscript that he had received from the Bohemian physician and astronomer Tadeáš Hájek, a friend of Rheticus. Det Commentariolus would appear complete in print for the first time only in 1878. [63]
In 1510 or 1512 Copernicus moved to Frombork, a town to the northwest at the Vistula Lagoon on the Baltic Sea coast. There, in April 1512, he participated in the election of Fabian of Lossainen as Prince-Bishop of Warmia. It was only in early June 1512 that the chapter gave Copernicus an "external curia"—a house outside the defensive walls of the cathedral mount. In 1514 he purchased the northwestern tower within the walls of the Frombork stronghold. He would maintain both these residences to the end of his life, despite the devastation of the chapter's buildings by a raid against Frauenburg carried out by the Teutonic Order in January 1520, during which Copernicus's astronomical instruments were probably destroyed. Copernicus conducted astronomical observations in 1513–16 presumably from his external curia and in 1522–43, from an unidentified "small tower" (turricula), using primitive instruments modeled on ancient ones—the quadrant, triquetrum, armillary sphere. At Frombork Copernicus conducted over half of his more than 60 registered astronomical observations. [63]
Having settled permanently at Frombork, where he would reside to the end of his life, with interruptions in 1516–19 and 1520–21, Copernicus found himself at the Warmia chapter's economic and administrative center, which was also one of Warmia's two chief centers of political life. In the difficult, politically complex situation of Warmia, threatened externally by the Teutonic Order's aggressions (attacks by Teutonic bands the Polish-Teutonic War of 1519–21 Albert's plans to annex Warmia), internally subject to strong separatist pressures (the selection of the prince-bishops of Warmia currency reform), he, together with part of the chapter, represented a program of strict cooperation with the Polish Crown and demonstrated in all his public activities (the defense of his country against the Order's plans of conquest proposals to unify its monetary system with the Polish Crown's support for Poland's interests in the Warmia dominion's ecclesiastic administration) that he was consciously a citizen of the Polish-Lithuanian Republic. Soon after the death of uncle Bishop Watzenrode, he participated in the signing of the Second Treaty of Piotrków Trybunalski (7 December 1512), governing the appointment of the Bishop of Warmia, declaring, despite opposition from part of the chapter, for loyal cooperation with the Polish Crown. [63]
That same year (before 8 November 1512) Copernicus assumed responsibility, as magister pistoriae, for administering the chapter's economic enterprises (he would hold this office again in 1530), having already since 1511 fulfilled the duties of chancellor and visitor of the chapter's estates. [63]
His administrative and economic duties did not distract Copernicus, in 1512–15, from intensive observational activity. The results of his observations of Mars and Saturn in this period, and especially a series of four observations of the Sun made in 1515, led to the discovery of the variability of Earth's eccentricity and of the movement of the solar apogee in relation to the fixed stars, which in 1515–19 prompted his first revisions of certain assumptions of his system. Some of the observations that he made in this period may have had a connection with a proposed reform of the Julian calendar made in the first half of 1513 at the request of the Bishop of Fossombrone, Paul of Middelburg. Their contacts in this matter in the period of the Fifth Lateran Council were later memorialized in a complimentary mention in Copernicus's dedicatory epistle in Dē revolutionibus orbium coelestium and in a treatise by Paul of Middelburg, Secundum compendium correctionis Calendarii (1516), which mentions Copernicus among the learned men who had sent the Council proposals for the calendar's emendation. [64]
During 1516–21, Copernicus resided at Olsztyn (Allenstein) Castle as economic administrator of Warmia, including Olsztyn (Allenstein) and Pieniężno (Mehlsack). While there, he wrote a manuscript, Locationes mansorum desertorum (Locations of Deserted Fiefs), with a view to populating those fiefs with industrious farmers and so bolstering the economy of Warmia. When Olsztyn was besieged by the Teutonic Knights during the Polish–Teutonic War, Copernicus directed the defense of Olsztyn and Warmia by Royal Polish forces. He also represented the Polish side in the ensuing peace negotiations. [65]
Copernicus for years advised the Royal Prussian sejmik on monetary reform, particularly in the 1520s when that was a major question in regional Prussian politics. [67] In 1526 he wrote a study on the value of money, "Monetae cudendae ratio". In it he formulated an early iteration of the theory, now called Gresham's law, that "bad" (debased) coinage drives "good" (un-debased) coinage out of circulation—several decades before Thomas Gresham. He also, in 1517, set down a quantity theory of money, a principal concept in economics to the present day. Copernicus's recommendations on monetary reform were widely read by leaders of both Prussia and Poland in their attempts to stabilize currency. [68]
In 1533, Johann Widmanstetter, secretary to Pope Clement VII, explained Copernicus's heliocentric system to the Pope and two cardinals. The Pope was so pleased that he gave Widmanstetter a valuable gift. [69] In 1535 Bernard Wapowski wrote a letter to a gentleman in Vienna, urging him to publish an enclosed almanac, which he claimed had been written by Copernicus. This is the only mention of a Copernicus almanac in the historical records. The "almanac" was likely Copernicus's tables of planetary positions. Wapowski's letter mentions Copernicus's theory about the motions of the earth. Nothing came of Wapowski's request, because he died a couple of weeks later. [69]
Following the death of Prince-Bishop of Warmia Mauritius Ferber (1 July 1537), Copernicus participated in the election of his successor, Johannes Dantiscus (20 September 1537). Copernicus was one of four candidates for the post, written in at the initiative of Tiedemann Giese but his candidacy was actually pro forma, since Dantiscus had earlier been named coadjutor bishop to Ferber and since Dantiscus had the backing of Poland's King Sigismund I. [70] At first Copernicus maintained friendly relations with the new Prince-Bishop, assisting him medically in spring 1538 and accompanying him that summer on an inspection tour of Chapter holdings. But that autumn, their friendship was strained by suspicions over Copernicus's housekeeper, Anna Schilling, whom Dantiscus banished from Frombork in spring 1539. [70]
In his younger days, Copernicus the physician had treated his uncle, brother and other chapter members. In later years he was called upon to attend the elderly bishops who in turn occupied the see of Warmia—Mauritius Ferber and Johannes Dantiscus—and, in 1539, his old friend Tiedemann Giese, Bishop of Chełmno (Kulm). In treating such important patients, he sometimes sought consultations from other physicians, including the physician to Duke Albert and, by letter, the Polish Royal Physician. [71]
In the spring of 1541, Duke Albert—former Grand Master of the Teutonic Order who had converted the Monastic State of the Teutonic Knights into a Lutheran and hereditary realm, the Duchy of Prussia, upon doing homage to his uncle, the King of Poland, Sigismund I—summoned Copernicus to Königsberg to attend the Duke's counselor, George von Kunheim, who had fallen seriously ill, and for whom the Prussian doctors seemed unable to do anything. Copernicus went willingly he had met von Kunheim during negotiations over reform of the coinage. And Copernicus had come to feel that Albert himself was not such a bad person the two had many intellectual interests in common. The Chapter readily gave Copernicus permission to go, as it wished to remain on good terms with the Duke, despite his Lutheran faith. In about a month the patient recovered, and Copernicus returned to Frombork. For a time, he continued to receive reports on von Kunheim's condition, and to send him medical advice by letter. [72]
Some of Copernicus's close friends turned Protestant, but Copernicus never showed a tendency in that direction. The first attacks on him came from Protestants. Wilhelm Gnapheus, a Dutch refugee settled in Elbląg, wrote a comedy in Latin, Morosophus (The Foolish Sage), and staged it at the Latin school that he had established there. In the play, Copernicus was caricatured as the eponymous Morosophus, a haughty, cold, aloof man who dabbled in astrology, considered himself inspired by God, and was rumored to have written a large work that was moldering in a chest. [45]
Elsewhere Protestants were the first to react to news of Copernicus's theory. Melanchthon wrote:
Some people believe that it is excellent and correct to work out a thing as absurd as did that Sarmatian [i.e., Polish] astronomer who moves the earth and stops the sun. Indeed, wise rulers should have curbed such light-mindedness. [45]
Nevertheless, in 1551, eight years after Copernicus's death, astronomer Erasmus Reinhold published, under the sponsorship of Copernicus's former military adversary, the Protestant Duke Albert, the Prussian Tables, a set of astronomical tables based on Copernicus's work. Astronomers and astrologers quickly adopted it in place of its predecessors. [73]
Heliocentrism
Some time before 1514 Copernicus made available to friends his "Commentariolus" ("Little Commentary"), a manuscript describing his ideas about the heliocentric hypothesis. [x] It contained seven basic assumptions (detailed below). [74] Thereafter he continued gathering data for a more detailed work.
At about 1532 Copernicus had basically completed his work on the manuscript of Dē revolutionibus orbium coelestium but despite urging by his closest friends, he resisted openly publishing his views, not wishing—as he confessed—to risk the scorn "to which he would expose himself on account of the novelty and incomprehensibility of his theses." [70]
In 1533, Johann Albrecht Widmannstetter delivered a series of lectures in Rome outlining Copernicus's theory. Pope Clement VII and several Catholic cardinals heard the lectures and were interested in the theory. On 1 November 1536, Cardinal Nikolaus von Schönberg, Archbishop of Capua, wrote to Copernicus from Rome:
Some years ago word reached me concerning your proficiency, of which everybody constantly spoke. At that time I began to have a very high regard for you. For I had learned that you had not merely mastered the discoveries of the ancient astronomers uncommonly well but had also formulated a new cosmology. In it you maintain that the earth moves that the sun occupies the lowest, and thus the central, place in the universe. Therefore with the utmost earnestness I entreat you, most learned sir, unless I inconvenience you, to communicate this discovery of yours to scholars, and at the earliest possible moment to send me your writings on the sphere of the universe together with the tables and whatever else you have that is relevant to this subject . [75]
By then Copernicus's work was nearing its definitive form, and rumors about his theory had reached educated people all over Europe. Despite urgings from many quarters, Copernicus delayed publication of his book, perhaps from fear of criticism—a fear delicately expressed in the subsequent dedication of his masterpiece to Pope Paul III. Scholars disagree on whether Copernicus's concern was limited to possible astronomical and philosophical objections, or whether he was also concerned about religious objections. [y]
De revolutionibus orbium coelestium
Copernicus was still working on De revolutionibus orbium coelestium (even if not certain that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a Wittenberg mathematician, arrived in Frombork. Philipp Melanchthon, a close theological ally of Martin Luther, had arranged for Rheticus to visit several astronomers and study with them. Rheticus became Copernicus's pupil, staying with him for two years and writing a book, Narratio prima (First Account), outlining the essence of Copernicus's theory. In 1542 Rheticus published a treatise on trigonometry by Copernicus (later included as chapters 13 and 14 of Book I of De revolutionibus). [76] Under strong pressure from Rheticus, and having seen the favorable first general reception of his work, Copernicus finally agreed to give De revolutionibus to his close friend, Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing by the German printer Johannes Petreius at Nuremberg (Nürnberg), Germany. While Rheticus initially supervised the printing, he had to leave Nuremberg before it was completed, and he handed over the task of supervising the rest of the printing to a Lutheran theologian, Andreas Osiander. [77]
Osiander added an unauthorised and unsigned preface, defending Copernicus' work against those who might be offended by its novel hypotheses. He argued that "different hypotheses are sometimes offered for one and the same motion [and therefore] the astronomer will take as his first choice that hypothesis which is the easiest to grasp." According to Osiander, "these hypotheses need not be true nor even probable. [I]f they provide a calculus consistent with the observations, that alone is enough." [78]
The scientific revolution caused religious controversies, while the Enlightenment challenged absolute monarchy.” The effects of the scientific revolution differ from the effects of the Enlightenment is that the scientific revolution caused religious controversies, while the Enlightenment challenged absolute monarchy.
How did the success of the Scientific Revolution influence Enlightenment thinkers? 1. Philosophers saw scientists use reasoning, empirical analysis, and the scientific method to disprove previously-held beliefs and discover physical laws, such as the properties of matter and energy.
Google Doodle Honors 16th Century Astronomer Nicolaus Copernicus
In the early 1500s, famed Polish astronomer Nicolaus Copernicus first proposed that the Earth was not the center of the universe — a revelation that, more than 500 years later, has catapulted the 16th century scientists into the center of the Google-verse.
The Internet search giant Google honored Copernicus' paradigm-shifting model of the cosmos today with a unique dynamic "doodle" that animates the motion of the solar system's planets around the sun. The Copernicus doodle went live on Copernicus' 540th birthday.
Nicolaus Copernicus was born on Feb. 19, 1473, and traveled to Italy at age 18 to attend university. At that time, the prevailing theory of the cosmos stated that the planets (not to mention the sun) all circled the Earth, which was at the center of the universe.
At the University of Bologna, Copernicus studied astronomy under professor Domenico Maria de Novara, during which time he helped observe the night sky. After return to his native Poland to serve as a cleric in Frauenburg, he continued his astronomical observations using a observatory in the tower in which he lived. [The Greatest Astronomers of All Time]
Copernicus is perhaps best known for his work on the motion of solar system planets. The prevailing model — that the Earth was at the center of the universe — resulted in a complicated view of the solar system in order to account for the apparent backward motion of some planets across the sky. This "retrograde motion," as it was called, was explained by confusing circles within circles (called epicycles) by the Greek astronomer Ptolemy.
But Copernicus' model streamlined the solar system by proposing that the Earth was not the center of the universe — a heretical view at the time. Instead, Copernicus proposed that the center was near the sun, and that all the planets (Earth included) revolved around it. He also proposed that that it was the Earth's motion around the sun that caused other planets to appear as if they moved backward — a theory later proven correct.
The Copernican model of the solar system is also known as the heliocentric model. While Copernicus still got some details incorrect (he assumed the orbits of planets were perfect circles, not the ellipses we know today, which still required epicycles), it did lay the foundation for future astronomers.
Copernicus documented his theory in handwritten notes to friends in 1514, when he would have been about 41 years old. It was not until he was 70 and near death that Copernicus formally published his proposal in the book "On the Revolutions of the Heavenly Spheres."
Despite Copernicus' work, nearly 100 years later Italian astronomer Galileo Galilei found himself in trouble with Catholic church authorities in 1632 when he also proposed that Earth orbited the sun. Both astronomers were ultimately vindicated, leading to the modern understanding of solar system mechanics scientists have today.
Nicolaus Copernicus, Polish Astronomer
Copernicus is the father of modern astronomy and the driving of the astronomical revolution in the 16th Century.
After many years of looking and thinking, Copernicus came to the conclusion that the Earth and the other planets revolve around the Sun.
His observations of the sky and his reflections, led him to formulate the theory that the Earth is not the center of the universe.
Nicolaus Copernicus provided the foundations that allowed Kepler, Galileo, Herschel and Newton to culminate the astronomical revolution.
Seasons in the Martian Year as the red planet orbits the Sun Credit: web “mars.nasa.gov”
In addition to his intelligence and tenacity, Copernicus had the enormous courage to break prudently with what in his time was considered an irrefutable truth.
Family and studies of Copernicus
Nicolaus Copernicus was born in 1473, in the city of Torun, on the banks of the Vistula, in Poland.
During his childhood and youth, he received an excellent education, thanks to his uncle Lucas, who was his tutor since, at age 10, Nicolás was orphaned.
Torun is a very famous city, mainly because Copernicus was born there. Credit: website traveler.es
From 1491, Copernicus studied mathematics and art at the University of Krakow, astronomy at Bologna, medicine at the University of Padua, and he obtained the degree of Doctor of Canon Law at Ferrara.
He was a great student of classical authors and confessed himself as a great admirer of Ptolemy, whose Almagest he thoroughly studied.
Jaguelonica University, founded in 1364, is a prestigious University of Krakow,. Credit: wikipedia
Professional life of Copernicus
For 25 years, since he was an assistant to Professor Domenico María de Novara, in Bologna.
His uncle Lucas introduced him to canongy, which he performed for the rest of his life.
Reinstated permanently in his country (1523), he dedicated himself to the administration of the Diocese of Warmia, practiced Medicine, held certain administrative positions and carried out his immense and fundamental work in the field of Astronomy.
Circumstances of the astronomical observations of Copernicus
Copernicus fulfilled his obligations as canon of the Frauenburg Cathedral, attending all religious services.
At the same time, he enjoyed an excellent financial situation, as he was a beneficiary of taxes and contributions from the inhabitants of Frauenburg.
The enormous merit of Copernicus is that all his astronomical observations were made on cold nights in a city that is located far to the north of Europe.
Above all, Copernicus did not have a telescope, so all his measurements were made with very ingenious artisanal means, but without this essential instrument.
Copernicus made repeated and meticulous observations of the movement of the planets that he could see with the naked eye.
Copernicus’s revolutionary discoveries
His great powers of observation allowed him to verify that Venus and Mercury were always close to the Sun.
In addition, he observed that these planets gave the impression that they repeatedly changed direction by moving backwards.
These facts, repeatedly observed, contradicted the theory that these planets revolved around the Earth because, if that were the case, sometimes they should be located far from the Sun. And this never happened.
Furthermore, Copernicus found it very strange that Venus and Mercury changed the direction of rotation at some times of the year.
Finally he deduced that observations of these real events were easily explained by the theory that the Earth and the planets revolve around the Sun, as stated in ancient times by Aristarchus of Samos.
Venus and Mercury look close to the Sun because they are actually closer to the Sun. Credit: Biosphere Project.
Copernicus thought that if Mercury is closer to the Sun, it travels a shorter orbit and moves faster than Earth, giving the impression at times of moving backward, because it goes around the Sun several times during the Earth year.
This gives the impression that Mercury changes direction repeatedly when it passes the Earth and then moves away from it. However, it has the same address at all times.
Publications by nicolaus copernicus
Around 1507, Copernicus produced his exposition of an astronomical system according to which the Earth moves around the Sun.
Although this novel statement only circulated privately, the new ideas spread among scholars.
In the knowledge that his theory could spark a bitter ecclesiastical controversy, Copernicus had decided never to publish them.
In times of the Inquisition it was not wise to challenge ecclesiastical theories, with statements that contradicted biblical interpretations.
As an astronomer, Copernicus knew perfectly well that his theory was right and defeated the teachings of the church.
As a priest, he decided to be cautious because his position and his life were in serious danger.
For the next three decades, Copernicus neither published nor taught his discoveries, but his theory was discussed everywhere.
Artistic composition of planets in the sky. Credit: Unknown
Copernicus continued to refine his theory. He drew up new tables with data on the motion of the planets and wrote extensively about it.
In 1533, encouraged by some friends, Copernicus wrote a sketch of his hypothesis about celestial movements.
Copernicus worked with the hypothesis that the orbits of the planets were circular. This hypothesis forced him to introduce a large number of corrections to his theory, so that it coincided with the real observations of the movement of the planets.
In this manuscript summary he established his theory in 6 axioms, reserving the mathematical part for the main work to be published later under the title “On the revolutions of the celestial spheres“.
This work had an excellent reception, even in the official circles of the Church so much so that Cardinal Schönberg urged Copernicus to write a treatise in which his heliocentric theory was presented in detail.
He probably never would have done it, except that in 1539, already in the last years of his life, fortuitously and unexpectedly, a young professor of mathematics and astronomy, known by the name of Rheticus, arrived in Frauenburg.
Rheticus was a young Austrian who had a prodigious mathematical talent. Credit: Wikipedia
Rheticus urged Copernicus to publish his theory. Copernicus agreed to do it, but limiting himself to publish the tables he had made of the movements of the planets, without making any mention to the theory behind them.
Finally, Rheticus wrote a book explaining the ideas of Copernicus, whom he only mentioned by his first name and his birthplace.
Rheticus wrote a “letter” to one of his teachers in which he described the “theory of the Reverend Father Dr. Nicholas of Torun, Canon of Ermeland.”
He had the letter printed, which included astrological and biblical comments, and sent it to a few people.
The diffusion of this writing increased the pressure on Copernicus to publish all of his discoveries. In the end he relented.
Rheticus handed over the responsibility of printing it to the Lutheran priest Andreas Osiander who, astutely, had proposed that, if Copernicus decided to publish the book, he should say that the hypotheses it contained “were not articles of faith but mere calculations”.
With this prudent subterfuge, Copernicus would avoid criticism from the Aristotelians and the theologians whom he feared, with good reason.
Graphic illustration of the heliocentric model of Copernicus. Credit: Wikipedia
It was not until 1543 that the results of the investigations begun in 1507 were published.
The book was entitled “On the movements of the celestial bodies“ it stated that the Sun, and not the Earth, is the center of the universe.
This revolutionary theory marked an important milestone in the history of astronomy.
To protect Copernicus, Osiander wrote a preface, famous in the history of astronomy, which downplayed the book’s importance.
“These hypotheses need not be true or even probable provide a calculation consistent with observations That’s enough.
As far as hypotheses are concerned, let no one expect anything true from astronomy, which cannot provide it, unless ideas conceived for other purposes are accepted as truths and one of these studies moves away being crazier than when the start. Goodbye“.
The first printed copy of the book, which was dedicated to Pope Paul III (Alexander Farnese), arrived at the hands of the Supreme Pontiff on May 24, 1543.
The preface was unsigned, although all attributed its authorship to Copernicus.
Thanks to this subterfuge, potential antagonists decided that the ideas expressed were so doubtful that even the author believed them.
Later, in 1616, when Galileo raised the dust, the Catholic Church inscribed the book of Copernicus in the Index of Forbidden Books, from where it was not taken until 1835.
However, the daily rotation of the Earth around his axis was not definitively demonstrated until 1855, when the Frenchman Jean Foucalt (1819-1868) used his famous pendulum for it.
Pope Paul III was called Alexander Farnese, he belonged to the powerful Farnese family. Credit: Wikipedia
Death of Copernicus and recognitions
A few days after handing over his book, Copernicus passed away in the city of Frauenburg, at the age of 70, on May 24, 1543.
In 2005, a team of Polish archaeologists claimed to have found his remains in Frauenburg Cathedral.
The authenticity that these remains were actually from Copernicus was verified in 2008 by analyzing a tooth and part of the skull and comparing it with his hair found in one of his manuscripts.
From the skull, police experts, reconstructed his face, matching this with his portrait.
A black granite tombstone now identifies him as the founder of the heliocentric theory and also bears the representation of the Copernicus model of the solar system, a golden sun surrounded by six of the planets.
- His name appears on the Lutheran Calendar of Saints.
- The lunar crater Copernicus was named after him.
- The asteroid (1322) Coppernicus also owes its name to him.
- ESA’s Copernicus Space Program is also named after the astronomer.
- In the state of New York exists the Kopernik Observatory and Science Center.
- In memory of Nicolás Copernicus, on February 19, 2010 the IUPAC names element 112 of the periodic table as copernicium.
Planet Facts
He is known as the father of modern astronomy. Who would not know the proponent of this very famous heliocentric cosmology? He is no other than Nicolaus Copernicus. This famous man theorized that the Sun is at the center of the Universe in which the Earth revolves around it. Prior to knowing his contributions, the best way to start would be to get to know who this man is.
Nicolaus Copernicus was born on February 19, 1473 in the City of Torun, located in Royal Prussia, which is part of Poland. His parents were Nicolaus Copernicus, Sr., a merchant and Barbara Watzenrode, daughter of a leading merchant who moved from Cracow to Torun. He is the youngest among the four children. He has a brother, Andreas, an Augustinian canon, and two sisters Barbara and Katharina, who are a Benedectine nun and a wife of a businessman and councilor in Torun, respectively. Marriage seemed not to cross his mind, sad that he didn’t have his own kids however, he took care of the five kids of his sister Katharina until before his death.
When their father died, they became under the protection of Lucas Watzenrode, their uncle. Copernicus enrolled at the University of Cracow, where courses in Mathematics, Astronomy and Astrology were offered. Later on, since his uncle has been successful in his profession, he was given an administrative position just one level below the bishop. Copernicus was influenced to study Canon Law at the University of Bologna and there he lived with Domenica Maria Novara, an Astronomy professor. In here, he made his first astronomical observations which gradually paved the way to the establishment of his name in Astronomy. He studied at the University of Padua, but unfortunately was not able to earn a degree in medicine nevertheless, he earned a doctorate degree for Canon Law at the University of Ferrara. Years after, he became so much interested in Astronomy and performed studies in his own. On his Commentariolus, an essay he wrote, he presented his :Heliocentric Theory”, as well as the assumptions this theory is based.
He had a book which was entitled De Revolutionibus Orbium Coelestium eller On the Revolutions of the Celestial Spheres. A few of the assumptions that he has stated in there includes that the center of the Earth is not the centre of the Universe, as that is the center of gravity and lunar sphere all the spheres revolve about the sun as their midpoint, making the Sun as the Center of the Universe. This book, divided into six parts was published only after his death on May 24, 1543. His death was due to apoplexy and paralysis.
Indeed, Copernicus left a legacy in the field of Astronomy albeit rejections from the Catholic Church. From generation to generation, his works will be recognized and will be remembered.
Nicolaus Copernicus Short Bio by a Student
Comments - 2 Responses to “Nicolaus Copernicus”
Copernicus was one of the most brilliant scientists of all time. He inspired me to predict that there will be an EARTHQUAKE in San Francisco, California on Thursday, September 20, 2012 at 9:41:27 PM PDT. Epicenter near Glen Canyon Park. Magnitude 4.4 Richter. Thank You for this information Copernicus.
Copernicus sensed the truth about the solar system, but it was left to Galileo to prove it when the telescope was invented.
Nicolaus Copernicus Inventions
Nicolaus Copernicus was a scientist who loved to look up at the stars every night. He was fascinated with their movements and as such, is often referred to as the “Father of Modern Astronomy.” He was a polyglot, so could speak several different languages and devoted himself for three years during his schooling to mathematics and painting. He is often credited with the revolution in science that helped to bring about the modern age of discovery.
Memorable Inventions by Nicolaus Copernicus
Here is a look at his most famous inventions:
1. The Copernican System
Copernicus was the first scientist of any regard to propose that the Sun did not revolve around the Earth. His theory, which ran counter to all scientific claims at the time, was that the Earth was actually the center of the solar system and everything orbited around it. In the Copernican System, he proposed that all of the known heavenly bodies actually orbited around the Sun, which did not move at all. His initial vision of the universe that was known at the time was surprisingly accurate.
What is truly unique about all of his observations is that he made them without the use of a telescope as it hadn’t been invented as of yet. Unlike some of his later contemporaries that followed up his work, Copernicus wasn’t jailed because of his theories that ran against the charter of the Church at the time. This system serves today as the beginning of modern astronomy.
2. The Debasement of Currency
Even though Copernicus is known more for his work that makes people look up at the sky, he is also known for his ability to be a clear, concise administrator. At one point he was responsible for the administration of several different political and administrative duties while living in Frombork. After attending several meetings and looking at accounts and records in the region, he drafted an essay that recommended reforms to the local currency because it was being debased.
3. The Commentariolus
No one really knows for certain when Copernicus decided to really pursue the idea of an orbiting Earth. His very first thoughts that were published on the matter, however, where printed in 1508 and it was a small manuscript that wasn’t given any wide circulation. Many believe that these observations that were written in this initial manuscript came about when he decided to move to Frombork, away from his uncle, and built his own observatory.
4. The Elimination of the Ptolemy Equant
One of the core ideas that the Earth was the center of the known universe came from Claudius Ptolemy in the 2nd century. His theory was that in order to account for the movement of celestial bodies in orbit, an equant, or a second orbital revolution, must be taking place as the orbit around the Earth continued. Each planetary had a point that was orbited around and this helped to keep the idea of geocentrisim alive for another 1,200 years.